6/3 Further existence results
Proposition 1.35
$f, g:[a, b] \rightarrow \mathbb{R} \quad D=\{x \mid f(x) \neq g(x)\}$ is a finite set.
f, g : Riemann integrable

$$
\Rightarrow \quad \int_{a}^{h} f(x) d x=\int_{a}^{b} g(x) d x
$$

(Proof.) We prove the proposition for the case that $D=\{c\}$.
$(f(c) \neq g(c)$ and $x \neq c \Rightarrow f(x)=g(x))$

$$
\begin{aligned}
& \exists M>0 \quad|f(x)|,|g(x)| \leqslant M \quad \forall x \\
& \quad|f(c)-g(c)| \leqslant 2 M,\left|\sup _{x \in I_{1}} f(x)-\sup _{x \in \frac{1}{7}} g(x)\right| \leqslant 2 M
\end{aligned}
$$

$\forall \varepsilon>0$ (any positive number)

$$
\begin{align*}
& \quad \delta=\frac{\varepsilon}{8 M} \\
& P=\left\{I_{k}\right\}_{k=1}^{n} \text { a partition. }\left|I_{k}\right|<\delta \\
& \left|\sum \sup _{x \in I_{k}} f(x)\right| I_{k}\left|-\sum \sup _{x \in I_{k}} g(x)\right| I_{k}| | \\
& \equiv \sum\left|\sup _{x \in I_{k}} f(x)-\sup _{x \in I_{k}} g(x)\right|\left|I_{k}\right| \cdots \tag{1}
\end{align*}
$$

$\sup _{x \in I_{k}} f(x) \neq \sup _{x \in I_{k}} f(x)$ at most 2 intervals

$$
|\sup f(x)-\sup g(x)| \leqslant 2 M
$$

(1) $\leq 2 \times 2 M \times \delta=\frac{\varepsilon}{2}$

We can select P satisfying $\nabla(f, P)<\int f d x+\frac{\varepsilon}{2}$
Then,
$\int g(x) d x \leqslant \bar{U}(g, p) \leqslant \bar{U}(f, p)+\frac{2}{2} \leqslant \int f d x+\varepsilon$.
Similarly,

$$
\int f(x) d x \leqslant \int g(x)+\varepsilon
$$

Thus $\left|\int f(x) d x-\int g(x) d x\right|<\varepsilon$.
This implies $\int f d x=\int g d x$, since $\varepsilon>0$ is an arbitrary small number.

Example $\quad f(x)=0 \quad x \neq \frac{1}{2}, f\left(\frac{1}{2}\right)=1 \quad f:[0,1] \rightarrow \mathbb{R}$

$$
\begin{aligned}
& P_{n}=\left\{\left[0, \frac{1}{2}-\frac{1}{n}\right],\left[\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}\right],\left[\frac{1}{2}+\frac{1}{n}, 1\right] .\right. \\
& n \geq 3 \\
& \begin{aligned}
V\left(f, P_{n}\right)= & \sup _{x \leq \frac{1}{2}-\frac{1}{n}} f(x)\left(\frac{1}{2}-\frac{1}{n}\right)+\sup _{x \in\left[\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}\right]} f(x) \\
& +\operatorname{mp}_{\frac{1}{2}+\frac{1}{n} \leq x} f(x)\left(\frac{1}{2}-\frac{1}{n}\right) \\
= & 0+1 \times \frac{2}{n}+0=\frac{2}{n} \rightarrow 0
\end{aligned}
\end{aligned}
$$

$L(f, P) \geq 0$ implies that $\int f(x) d x=0$
Proposition $1.39 \quad f:[a, b] \rightarrow \mathbb{R}$ bounded
f is integrable on $[a, r]$ for any $r \in[a, b)$
$\Rightarrow f$ is integrable on $[a b]$ and $\int_{a}^{b} f(x) d x=\lim _{r a} \int_{a}^{r} f(x) d x$
(Proof)
$\forall \varepsilon>0, \quad \delta_{0} \bar{F} \frac{\varepsilon}{4 M} \wedge(b-a), \quad M=\sup (f(x))$

$$
\begin{aligned}
& { }^{m} p \in \pi([a, r]) \quad\left(f:[a, r] \rightarrow \mathbb{R} \quad r_{\varepsilon}=b-\delta_{0}\right) \\
& \nabla(f, p)-L(f, p)<\frac{\varepsilon}{4} \\
& P^{\prime}=P \cup\{[r, b]\} \in \pi([a, b]) \\
& \left|\bar{U}(f, P)-U\left(f, P^{\prime}\right)\right|=\left|\operatorname{lup}_{x \in[\text { mb }]} f(x)\right| b-r \left\lvert\,<M \delta_{0} \leqslant \frac{\varepsilon}{4}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left|U\left(f, p^{\prime}\right)-L\left(f, p^{\prime}\right)\right|<\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}<\varepsilon
\end{aligned}
$$

f is integrable on $\left[\begin{array}{ll}a & b\end{array}\right]$ and

$$
\int_{a}^{b} f(x) d x=\lim _{r \rightarrow b} \int_{a}^{n} f(x) d x
$$

Example $f:[0,1] \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}\sin \frac{1}{x} & (0<x<1) \\ 0 & (x=0)\end{cases}
$$

$|f(x)| \leq 1$, (bounded) and f is continuous on $[0, r] \quad u \leq r<1$ f is not continuous at $x=0$

$$
\overline{\lim }_{x \rightarrow 0} f(x)=1, \lim _{x \rightarrow 0} f(x)=-1,|f(x)| \leq 1
$$

(For any $\delta>0, \exists x_{1}, x_{2} \in[0, \delta]$ sit.

$$
f\left(x_{1}\right)=1, \quad f\left(x_{2}\right)=-1
$$

f : continuous on $[0, r] \quad(r<0)$, then f is integrable $[0, r]$. Thus f satisfies the conditions of $T_{H} 1.39$.
Therefore, f is integrable on $[a, b]$.

