6/17 Consequence of the fundamental theorems
Example $1.52 \quad \frac{d}{d x}\left[\frac{1}{p+1} x^{p+1}\right]=x^{p} \quad$ implies

$$
\begin{aligned}
& \int_{0}^{1} x^{p} d x=\frac{1}{p+1} \quad\left(\text { Using } T_{m} 1.45\right) \\
& P>0 \quad f(x)=x^{p} \quad(x>0) \\
& P_{n}=\left\{\left[\frac{j-1}{n}, \frac{j}{n}\right]\right\}_{n=1}^{n} \quad: \text { partitions of } I \\
& \nabla\left(f, P_{n}\right)=\sum_{k=1}^{n} \sup _{x \in\left[\frac{j-1}{n} \frac{j}{n}\right]} f(x) \frac{1}{n}(n=1,2, \cdots) \\
&=\sum_{k=1}^{n}\left(\frac{j}{n}\right)^{p} \frac{1}{n}=\frac{1}{n^{p+1}} \sum_{j=1}^{n} j P \\
& \longrightarrow \int_{0}^{1} x^{p} d x=\left(\frac{x^{p+1}}{P+1}\right)_{0}^{1}=\frac{1}{P+1}
\end{aligned}
$$

Theorem $1.53 \quad f, g:[a, b] \rightarrow \mathbb{R} \quad f^{\prime}, g^{\prime}:$ in Eg able.

$$
\Longrightarrow \int_{a}^{h} f(x) g^{\prime}(x) d x=f(x) g(b)-f(a) g(a)-\int_{a}^{h} f^{\prime}(x) g(x) d x
$$

(Proof)

$$
(f g)^{\prime}=f g^{\prime}+f^{\prime} g
$$

By TH I.26, $T_{H} 1.45$

$$
\begin{aligned}
\int_{a}^{b} f g^{\prime} d x+\int_{a}^{h} f^{\prime} g d x & =\int_{a}^{b}(f g)^{\prime} d x \\
& =f(b) g(b)-f(a) g(a)
\end{aligned}
$$

Example $1.54 \quad n=0,1,2, \cdots$

$$
I_{n}(x)=\int_{0}^{x} t^{n} e^{-t} d t
$$

If $n \geq 1, f(t)=t^{n} \quad g^{\prime}(t)=e^{-t} \quad\left(g(t)=-e^{-t}\right)$
Using $T_{H} 1.53$ we have:

$$
\begin{align*}
& I_{n}(x)=-x^{n} e^{-x}+n \int_{0}^{x} t^{n-1} e^{-t} d t=-x^{n} e^{-z}+n I_{n-1}(x) \\
& I_{0}(x)=\int_{0}^{x} e^{-t} d t=1-e^{-x} \tag{1}
\end{align*}
$$

$$
I_{n}(x)=n!\left[1-e^{-x} \sum_{k=0}^{n} \frac{x^{*}}{k!}\right] \quad \text { (2) }(0!=1 \text { : definition.) }
$$

(1) implies the case $n=0$.

Assume (2) $k \leqslant n-1$.

$$
\begin{aligned}
& I_{n}(x)=-x^{n} e^{-x}+n I_{n \rightarrow 1}(x) \\
& =-x^{n} e^{-x}+n(n-0)!\left[1-e^{-x} \sum_{k=0}^{n-1} \frac{x^{k}}{k!}\right] \\
& =n!\left[1-e^{-x} \sum_{k=0}^{n-1} \frac{x^{k}}{k!}-\frac{x^{n}}{n!}\right] \\
& =n!\left[1-e^{-x} \sum_{k=0}^{m} \frac{x^{k}}{k!}\right]
\end{aligned}
$$

By the mathematical induction, we have (2) for any $n \in \mathbb{N}$.

$$
\lim _{x \rightarrow \infty} e^{-x} \frac{x^{k}}{k!}=0 \quad \text { for any } k \in \mathbb{N}
$$

Then $\quad \lim _{x \rightarrow \infty} I_{n}(x)=n!\left(1-\lim _{x \rightarrow \infty} \sum \frac{x^{k}}{k!} e^{-x}\right]$

$$
\begin{aligned}
& \quad \int_{0}^{\infty} t^{n} e^{-t} d t=n! \\
& \Gamma(z)=\int_{r \rightarrow \infty}^{\infty} t_{0}^{z-1} e^{-t} d t \quad(P-\text { function }) \\
& \Gamma(n)=(n-1)!
\end{aligned}
$$

Theorem 1.55 (Change of variable)
$g: I=[a, b] \rightarrow \mathbb{R} \quad g^{\prime}:$ integrable on I. $f:[g(a), g(x)]$ contimums

$$
\Rightarrow \quad \int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(a)} f(u) d u \quad(g(a)<g(u))
$$

(proof) We only consider the case $g^{\prime}>0$.

$$
\begin{aligned}
& F(x)=\int_{a}^{x} f(u) d u \\
& \begin{aligned}
(F \circ g)^{\prime}(x) & =f(g(x)) g^{\prime}(x) \quad \text { By } T_{H} 1.45 \\
\int_{a}^{h} f(g(x)) g^{\prime}(x) d x & =\int_{a}^{h}(F \circ g)^{\prime}(x) d x \\
& =F(g(a))-F(g(a)) \text { 【/ }
\end{aligned}
\end{aligned}
$$

Example $1.56 \quad g(x)=x^{3}$
$I=[-a, a], J=\left[-a^{3}, a^{3}\right] \quad f:$ continuous on J.

$$
\begin{gathered}
\int_{-a}^{a} f\left(x^{3}\right) 3 x^{2} d x=\int_{-a^{3}}^{a^{3}} f(u) d u \\
\int_{\alpha}^{\beta} f\left(x^{2}\right) 2 x d x=\int_{\alpha^{2}}^{\beta^{2}} f(t) d t \\
\alpha=-a, \beta=a \quad(a>\gamma) \Rightarrow \int_{a^{2}}^{a^{2}} f(t) d t=0 \\
P_{n}=\left\{\left[\frac{k-1}{n}, \frac{k}{n}\right]\right\}_{k=-n+1}^{n} \quad I_{k}^{(n)}=\left[\frac{k-1}{n}, \frac{k}{n}\right] \\
\quad k=-n+1, \cdots, n \\
k \geq 1 \Rightarrow I_{k}^{(n)}=[\alpha, \beta] \Rightarrow I_{-(k-1)}^{(n)}=[-\beta,-\alpha]
\end{gathered}
$$

For large enough n,

$$
\left.\begin{array}{l}
\sup _{x \in I_{k}^{(n)}} 2 x f\left(x^{2}\right) \\
\inf _{x \in I_{n}^{(n)}} 2 x f\left(x^{2}\right)
\end{array}\right) \stackrel{\perp}{\rightleftharpoons}\left(\begin{array}{l}
-\sup _{x \in I_{-(k-1)}^{(m)}} 2 x f\left(x^{2}\right) \\
-\inf _{x \in I_{-k-1)}^{(m)}} 2 x f\left(x^{2}\right) \\
\Rightarrow U\left(2 x f\left(x^{2}\right), P_{M}\right) \rightleftharpoons 0 \\
\Rightarrow L\left(2 x f\left(x^{2}\right), P_{n}\right) \rightleftharpoons 0
\end{array}\right.
$$

