On Two Generalizations for k-additivity

Ryoji Fukuda¹, Aoi Honda², and Yoshiaki Okazaki³

¹ Oita University, 700 Dan-noharu, Oita city, Oita, 870-1192, JAPAN rfukuda@oita-u.ac.jp

² Kyushu Institute of Technology, 680-4 Kawazu, Iizuka city, Fukuoka 820-8502, JAPAN

aoi@ces.kyutech.ac.jp

Fuzzy Logic Systems Institute, 680-41 Kawazu, Iizuka city, Fukuoka 820-0067, JAPAN okazaki@flsi.or.jp

Abstract. There are two generalizations for k-additive set functions: constructive k-additivity and formulaic k-additivity. We study some properties around these concepts and their relations. A constructively k-additive set function is always formulaic k-additive. For a distorted measure, these two concepts are equivalent. Under certain conditions of "bounded variation" and "continuity at the \emptyset ," we prove the constructive k-additivity for a formulaic k-additive set function.

Keywords: fuzzy measure· monotone measure· k-order additivity· Möbius transform· distorted measure

1 Introduction

The concept of k-order additivity was originally introduced for a monotone measure on a finite set using the Möbius transform (see for example [1],[2], [3]). This is an important concept to reduce the complexity of non-additive measures. As an example for the identification of a non-additive measure, we need $2^n - 1$ parameters to express a general set function defined on a set with cardinality n; however, only $(n^2 + n)/2$ parameters are required for a two-additive measure. Assuming that one uses linear regression for the identification of a non-additive measure, we use a covariance matrix. For the covariance matrix for a 10 elements' set, the number of elements can be reduced to 3025 from 1048576.

There are two approaches to define the k-additivity for non-discrete set functions. One is a constructive approach and the other uses a formulaic relation among the terms of the Möbius transform. R. Mesiar gave the first generalization for a k-additive non-additive measure [4] through the constructive approach. Fukuda, Honda, and Okazaki [5] proved a monotone decreasing convergence theorem for the Pan Integral with respect to a monotone measure of this type. Such monotone measures can be described by several σ -additive signed measures defined on set spaces, the precise definition of which will be given in section 2, and this is suitable to estimate integral values. Honda, Fukuda, and Okazaki [6] gave

the definition of formulaic k-additivity. The Möbius transform was extended to non-discrete set functions for this definition, and the definition and some equivalent conditions were described using this Möbius transform. A distorted measure μ is a set function , which can be represented by $\mu(A) = f(m(A))$ using a probability measure $m(\cdot)$ and a non decreasing function f. The formulaic k-additivity is essentially equivalent to the fact that the distortion function f is a k-order polynomial ([6].)

Briefly, constructive k-additivity is useful for estimations or calculations, and formulaic k-additivity is a natural extension of k-additivity for the finite element case. The present study attempts to show that these two definitions are essentially the same. This problem is naturally valid on a finite set or on a finite σ -algebra. We analyze the structures of our settings in the finite case and describe the relations between the two generalizations for k-additivity. There are some natural conditions for this extension. A σ -additive measure satisfies continuity from above and below, and this is a key property for the extension of measures. A non-additive set function is not always continuous from above or below, but we assume these continuities.

Under these settings, we show the following properties in this paper.

- (a) All constructive k-additive set functions are formulaic k-additive.
- (b) A distorted measure is formulaic k-additive if and only if it is constructively k-additive.
- (c) Consider a set function μ defined on a countably generated σ -algebra. Then, if a formulaic k-additive set function μ satisfies certain conditions of "bounded variation" and "fine continuity at \emptyset ," μ is constructively k-additive.

By showing the above problems, we will try to make sure the richness of the concepts of k-additivity.

2 Definitions and notations

Throughout this paper, (X, \mathcal{B}) denotes a measurable space, that is, X is a non-discrete set and \mathcal{B} is a σ -algebra $(\mathcal{B} \subset 2^X)$. We assume that any set function μ defined on \mathcal{B} satisfies $\mu(\emptyset) = 0$. We also assume that all one-point sets are measurable. Let n be a positive integer. We define an n-set space $X^{(n)}$ as follows.

$$X^{(n)} = \{ \{x_k\}_{k=1}^n \subset X, \ x_j \neq x_k \text{ if } j \neq k \}.$$

 $X^{(n)}$ can be also represented by

$$X^{(n)} = \{(x_1, \dots, x_n) \in X^n : x_j \neq x_k \text{ if } j \neq k\} / \sim,$$

where the equivalence relation \sim is defined by:

$$(x_1, \ldots, x_n) \sim (y_1, \ldots, y_n).$$
 \iff Two sets $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$ are identical.

Let \mathcal{B}^n denote a standard product σ -algebra on X^n , and let $\mathcal{B}^{(n)}$ be the σ -algebra on $X^{(n)}$ determined by the restriction (each element is different) and the equivalence relation \sim . This is one of the easiest way to construct a σ -algebra on the set spaces. These may be too fine to satisfy the uniqueness of σ -additive measures. Then, the structures of the set spaces may not be optimal for a constructively k-additive measure. At this step, we select one possible setting.

For a measurable set $A \in \mathcal{B}$, we define

$$A^{(n)} = \{(x_1, \dots, x_n) \in X^{(n)} : x_j \in A, \ j \le n\}.$$

Moreover, for $U \in \mathcal{B}^{(j)}$ and $V \in \mathcal{B}^{(k)}$, we define

$$U(\times)V = \{(x_{\ell})_{\ell=1}^{j+k} \in X^{(j+k)} : (x_{\phi(1)}, \dots, x_{\phi(j)}) \in U, \ (x_{\phi(j+1)}, \dots, x_{\phi(j+k)}) \in V \text{ for some permutation } \phi \text{ of } (1, \dots, j+k) \}.$$

We remark that $U(\times)V$ is an element of $\mathcal{B}^{(j+k)}$ if $U \in \mathcal{B}^{(j)}$ and $V \in \mathcal{B}^{(k)}$.

We mainly deal with these set operations for infinite (measurable) sets. For finite sets, if their cardinality is very small, $A^{(n)}$ or $U(\times)V$ can be empty.

Now we are prepared to define constructive k-additivity.

Definition 1 (constructive k-additivity [5]). A set function μ on \mathcal{B} is constructively k-additive $(k \in \mathbb{N})$, or μ has constructive k-additivity, if there exists a σ -additive signed measure μ_j on $(X^{(j)}, \mathcal{B}^{(j)})$ for each j = 1, 2, ..., k such that:

$$\mu(A) = \sum_{j=1}^{k} \mu_j(A^{(j)})$$

for any $A \in \mathcal{B}$.

Consider the case where \mathcal{B} is a finite family and X essentially is a finite set. Then, the classical Möbius transform and the inverse formula are available in this situation. Our generalization for the Möbius transform is a natural extension of Möbius transform for finite sub σ -algebras.

Definition 2 (generalized Möbius transform [6]). Let μ be a set function on \mathcal{B} and set $\mathcal{D}_n = \{\{A_1, A_2, \cdots, A_n\} : A_j \in \mathcal{B}, A_j \cap A_k = \emptyset, \quad j, k \leq n, j \neq k\}$ for any $n \in \mathbb{N}$, that is, \mathcal{D}_n is the family of all n disjoint measurable sets' combinations. A generalized Möbius transform $\{\nu_n\}$ of μ , which is a sequence of functions on \mathcal{D}_n , is defined as follows.

(a)
$$\nu_1(A) = \mu(A), \forall A \in \mathcal{B}.$$

(b)
$$\nu_n(A_1, A_2, \dots, A_n) = \mu(A_1 \cup A_2 \cup \dots \cup A_n) - \left\{ \sum_{j=1}^{n-1} \sum_{1 \le i_1 < \dots < i_j} \nu_j(A_{i_1}, \dots, A_{i_j}) \right\},$$

$$\forall \{A_1, A_2, \dots, A_n\} \in \mathcal{D}_n.$$

We call $\nu_i()$ the j-order adjusting function for each $j \in \mathbb{N}$.

Using these concepts, another generalization for k-additivity is given as follows.

Definition 3 (formulaic k-additivity [6]). Let μ be a set function on \mathcal{B} and $\{\nu_n\}$ be the generalized Möbius transform of μ . μ satisfies formulaic k-additivity (or μ is a formulaic k-additive set function) if $\nu_j(\mathbf{A}) = 0$ for any $\mathbf{A} \in \mathcal{D}_j$ and $j \geq k+1$.

Formulaic k-additivity satisfies the following equivalent conditions.

Proposition 1. [6](Theorem 10).

Let μ be a set function on \mathcal{B} , and let $\{\nu_n\}$ be its generalized Möbius transform. Then, the following are equivalent.

- (a) μ is formulaic k-additive.
- (b) $\nu_n = 0$ for any n > k.
- (c) Assume that $(A_1, \dots, A_{k-1}, B_1), (A_1, \dots, A_{k-1}, B_2) \in \mathcal{D}_k$, and $B_1 \cap B_2 = \emptyset$.

$$\nu_k(A_1, \dots, A_{k-1}, B_1 \cup B_2) = \nu_k(A_1, \dots, A_{k-1}, B_1) + \nu_k(A_1, \dots, A_{k-1}, B_2).$$

Remark. Using condition (b), a formulaic k-additive set function is also formulaic k'-additive for any $k' \geq k$.

3 Formulaic k-additivity of a constructively k-additive set function

In this section, we prove the formulaic k-additivity of a constructively k-additive set function.

Proposition 2. Let μ_n be a σ - additive signed measure on $(X^{(n)}, \mathcal{B}^{(n)})$, and μ be a set function on \mathcal{B} defined by

$$\mu(A) = \mu_n(A^{(n)}).$$

Then, for each $k \leq n$, ν_k is represented by

$$\nu_k(A_1, \dots, A_k) = \sum_{\substack{i_1 + \dots + i_k = n \\ 1 < i_1, \dots, i_k}} \mu_n(A_1^{(i_1)}(\times) \dots (\times) A_k^{(i_k)}).$$

Proof. We will prove this property by induction on k. For k = 1, this property is easily given by the fact that $\nu_1(A_1) = \mu(A_1) = \mu_n(A^{(n)})$. Assume the assertion

for $k \leq k_0 - 1$. Then, we have

$$\nu_{k_0}(A_1, \dots, A_{k_0}) = \mu(A_1 \cup \dots \cup A_{k_0}) - \sum_{j=1}^{k_0 - 1} \sum_{1 \le \ell_1 < \dots < \ell_j \le k_0} \nu_j(A_{\ell_1}, \dots, A_{\ell_j}) \\
= \mu_n((A_1 \cup \dots \cup A_{k_0})^{(n)}) - \sum_{j=1}^{k_0 - 1} \sum_{1 \le \ell_1 < \dots < \ell_j \le k_0} \nu_j(A_{\ell_1}, \dots, A_{\ell_j}) \\
= \sum_{j_1 + \dots + j_{k_0} = n} \mu_n(A_1^{(j_1)}(\times) \dots (\times) A_{k_0}^{(j_{k_0})}) \\
- \sum_{j=1}^{k_0 - 1} \sum_{1 \le \ell_1 < \dots < \ell_j \le k_0, \ i_1 + \dots + i_j = n} \mu_n(A_{\ell_1}^{(i_1)}(\times) \dots (\times) A_{\ell_j}^{(i_j)}) \\
= \sum_{j_1 + \dots + j_{k_0} = n} \mu_n(A_{\ell_1}^{(j_1)}(\times) \dots (\times) A_{\ell_k}^{(j_{k_0})}) \\
- \sum_{i_1 + \dots + i_{k_0} = n, \exists j, i_j = 0} \mu(A_{\ell_1}^{(i_1)}(\times) \dots (\times) A_{\ell_k}^{(i_{k_0})}) \\
= \sum_{j_1 + \dots + j_{k_0} = n} \mu_n(A_1^{(j_1)}(\times) \dots (\times) A_{k_0}^{(j_{k_0})})$$

We obtain formula (1) by the induction hypothesis. This implies the assertion for $k = k_0$ and concludes the proof.

Theorem 1. For any $n \in \mathbb{N}$, a constructive n-additive set function satisfies formulaic n-additivity.

Proof. We consider the case of

$$\mu(A) = \mu_n(A^{(n)}).$$

Using Proposition 2, for any disjoint sets $A_1, \ldots, A_{n-1}, B_1, B_2 \in \mathcal{B}$, we have:

$$\nu_n(A_1, \dots, A_{n-1}, B_1 \cup B_2) = \mu_n(A_1(\times) \dots (\times) A_{n-1}(\times) B_1 \cup B_2)$$

= $\mu_n(A_1(\times) \dots (\times) A_{n-1}(\times) B_1) + \mu_n(A_1(\times) \dots (\times) A_{n-1}(\times) B_2)$
= $\nu_n(A_1, \dots, A_{n-1}, B_1) + \nu_n(A_1, \dots, A_{n-1}, B_2).$

Then, the above formula follows the formulaic n-additivity of μ using Proposition 1.

Generally, μ can be represented by

$$\mu = \sum_{k=1}^{n} \mu_k(A^{(k)})$$

using signed measures μ_k on $(X^{(k)}, \mathcal{B}^{(k)})$. By the above arguments, $A \mapsto \mu_k(A^{(k)})$ satisfies formulaic k-additivity. Then these are formulaic n-additive since $k \leq n$ (Recall the remark after Proposition 1.)

4 k-additivity of distorted measure

A set function μ on \mathcal{B} is a distorted measure if there is a probability measure m on (X,\mathcal{B}) and non-decreasing continuous function f on \mathbb{R} with f(0) = 0 such that

$$\mu(A) = f(m(A))$$

for any $A \in \mathcal{B}$. The non-decreasing function f is called "a distortion function". A distorted measure is monotone measure, that is , $\mu(A) \leq \mu(B)$ if $A \subset B$. If a distorted measure is formulaic k-additive measure, the distortion function must be a polynomial.

Proposition 3. [6] (Theorem 17)

Let m be a probability measure on (X,\mathcal{B}) . Let f be the distortion function of a distorted measure $\mu(A) = f(m(A))$ $(A \in \mathcal{B})$. We assume that, for any $t, s \in \{m(A) : A \in \mathcal{B}\}$ and $A \in \mathcal{B}$ with m(A) = t, there exists $B \subset A$ such that $\mu(B) = s$ (this property is called "strong Darboux property"). Then, μ is formulaic k-additive if and only if f is a k-degree polynomial.

In the case where the distortion function of a distorted measure μ is a k-degree polynomial, then μ is constructively k-additive. This property was essentially proven by R. Mesiar [4], and we explain this using our notations.

Proposition 4. (R. Mesiar [4])

Let m be a positive finite σ -additive measure on (X, \mathcal{B}) and μ be a distorted measure given by $\mu(A) = f(m(A))$ $(A \in \mathcal{B})$ using a distortion function f. If f is a k-th degree polynomial, then μ is constructively k-additive.

Proof. We only need to prove this proposition for $f(x) = x^k$. The product measure m^k (defined on (X^k, \mathcal{B}^k)) can be easily reduced to the set space $(X^{(k)}, \mathcal{B}^{(k)})$, which concludes the proof.

Summing up the propositions in this section, we arrive at the following theorem.

Theorem 2. Let μ be a distorted measure on (X, \mathcal{B}) and $k \in \mathbb{N}$. Then, μ is constructively k-additive if and only if μ is formulaic k-additive.

5 k-additivity in a general case

We have proved that any constructively k-additive set functions are formulaic k-additive. In this section, we consider whether the reverse statement is true.

First, we consider the case where \mathcal{B} is a finite family. As we mainly deal with infinite measurable spaces, the hypothesis "all one-point sets are measurable" must be removed, and the definition of the n-th power set $A^{(n)}$ should be modified. For an element x of X, let [x] denote the smallest measurable set including x. Then, the definition of $A^{(n)}$ is modified by:

$$A^{(n)} = \{(x_1, x_2, \dots, x_n) \in A^n : \text{ if } j \neq j', \ x_{j'} \notin [x_j]\}.$$

Remark 1. Let \mathcal{B} be a finite σ -algebra. Then, there exists a family of atoms $\mathbb{D} = \{D_1, D_2, \cdots, D_L\}$, that is, $\mathbb{D} \subset \mathcal{B}$ is a disjoint family satisfying $\mathcal{B} = \sigma(\mathbb{D})$. $\mathcal{B}^{(n)}$ $(n \in \mathbb{N})$ can be expressed as follows:

$$\mathcal{B}^{(n)} = \sigma \left(\{ D_{i_1}(\times) \cdots (\times) D_{i_n} : 1 \le i_1 < \cdots < i_n \le n \} \right).$$

 $\{D_{i_1}(\times)\cdots(\times)D_{i_n}: 1 \leq i_1 < \cdots < i_n \leq n\}$ is the family of all atoms in $\mathcal{B}^{(n)}$.

Proposition 5. Let (X, \mathcal{B}) be a measurable space with the finite σ -algebra \mathcal{B} . Assume that a set function μ is formulaic k-additive. Then, for each $j \leq k$, we can construct a measure μ_j on each set space $(X^{(j)}, \mathcal{B}^{(j)})$ satisfying

$$\mu(A) = \sum_{j=1}^{k} \mu_j(A^{(j)}).$$

Proof. Because the σ -algebra \mathcal{B} is a finite set family, there exists a finite partition $\{D_j\}_{j=1}^n$ of X such that $\mathcal{B} = \sigma(\{D_j\}_{j=1}^n)$. Then, any $A \in \mathcal{B}$ can be represented by

$$A = \bigcup_{\ell=1}^{L} D_{i_{\ell}}, \quad 1 \le i_{1} < \dots < i_{L} \le n.$$

Let $j \leq k$ be a positive integer. Then, $\mathcal{B}^{(j)}$ (the σ -algebra of the set space $X^{(j)}$) can be represented as

$$\mathcal{B}^{(j)} = \sigma\left(\left\{D_{i_1}(\times)\cdots(\times)D_{i_j}: 1 \le i_1 < \cdots < i_j \le n\right\}\right),\,$$

and an element in $\mathcal{B}^{(j)}$ can be represented by a finite union of some subset of $\{D_{i_1}(\times)\cdots(\times)D_{i_j}: 1\leq i_1<\cdots< i_j\leq n\}.$

Without loss of generality, we assume that $\ell_i = i$ for each $i \leq L$. Then, the j-th power set is given by

$$A^{(j)} = \bigcup_{1 < \ell_1 < \ell_2 < \dots < \ell_j < L} D_{\ell_1}(\mathsf{x}) \cdots (\mathsf{x}) D_{\ell_j}.$$

Let $\{\nu_j\}$ be a Möbius transform of the set function μ . Then, $\nu_j = 0$ for any $j \geq k + 1$. We define a measure μ_j on $(X^{(j)}, \mathcal{B}^{(j)})$ by

$$\mu_i(D_{i_1}(\times)\cdots(\times)D_{i_i})=\nu_i(D_{i_1},\cdots,D_{i_i})$$

for each $(i_1, ..., i_j)$ $(1 \le i_1 < \cdots < i_j \le n)$.

$$\mu(A) = \mu(\bigcup_{\ell=1}^{L} D_{\ell})$$

$$= \sum_{j=1}^{k} \sum_{1 \le i_{1} < \dots < i_{j} \le L} \nu(D_{i_{1}}, \dots, D_{i_{j}})$$

$$= \sum_{j=1}^{k} \sum_{1 \le i_{1} < \dots < i_{j} \le L} \mu_{j}(D_{i_{1}}(x) \cdots (x) D_{i_{j}})$$

$$= \sum_{j=1}^{k} \mu_{j}(A^{(j)}).$$

Thus we have proved the proposition.

For further discussion, we will give some notations. Recall that \mathcal{D}_j $(j \in \mathbb{N})$ denotes the family of j-disjoint measurable sets. Let \overline{D} be an element of \mathcal{D}_j $(\overline{D} = \{D_1, \dots, D_j\} \in \mathcal{D}_j)$. Set

$$\nu_j(\overline{D}) = \nu(D_1, \cdots, D_j),$$

and

$$(\times \overline{D}) = D_1(\times) \cdots (\times) D_j \subset X^{(j)}.$$

Now, we give the following definitions.

Definition 4. Let μ be a set function on \mathcal{B} and $\{\nu_j\}$ be its Möbius transform. We define the j-th order total variation of ν_j as follows.

$$\|\nu_j\| = \sup\{\sum_{\ell=1}^L |\nu(\overline{D_\ell})| : L \in \mathbb{N}, \overline{D_\ell} \in \mathcal{D}_j, \ell \le L, (\times \overline{D_\ell}) \cap (\times \overline{D_{\ell'}}) = \emptyset \text{ if } \ell = \ell'\}.$$

Then, μ is said to have k-th order bounded variation if $\|\nu_j\| < \infty$ for any $j \leq k$. Next, we define the fine continuity of μ at \emptyset .

Definition 5. Let μ be a set function on \mathcal{B} and $\{\nu_j\}$ be its Möbius transform. Then, the j-th adjusting function ν_j has fine continuity at \emptyset if, for any sequence $\{\{\overline{D_i^{(\ell)}}\}_{i=1}^{N_\ell}\}_{\ell=1}^{\infty}$ of the disjoint finite set family in \mathcal{D}_j satisfying

$$\bigcup_{i=1}^{N_\ell} (\times \overline{D_i^{(\ell)}}) \searrow \emptyset \quad as \quad \ell \to \infty,$$

 ν_i satisfies

$$\lim_{\ell \to \infty} \sum_{i=1}^{N_{\ell}} |\nu_j(\overline{D_i^{(\ell)}})| = 0.$$

Moreover, μ is said to have k-order fine continuity at \emptyset iff ν_j has fine continuity at \emptyset for $j \leq k$.

Using these concepts, we will show the constructive k-additivity of a formulaic k-additive set function. To prove the existence of the corresponding σ -additive measure, we use the following extension theorem. This is well known for a nonnegative measure (see [7] for example); however, using standard additional arguments, the statement is valid in the following form.

Theorem 3. [Caratheodory's extension theorem] Let A be an algebra on X and μ be a finitely additive signed measure on (X, A). Assume that

$$\sup \left\{ \sum_{i=1}^{n} |\mu(A_i)| : n \in \mathbb{N}, \{A_i\}_{i=1}^{n} \text{ is a disjoint family in } \mathcal{A} \right\} < \infty,$$

and

$$\sum_{i=1}^{N_n} \mu(A_i^{(n)}) \to 0 \quad (n \to \infty),$$

for an arbitrary sequence of the disjoint family $\{\{A_i^{(n)}\}_{i=1}^{N_n}\}_{n=1}^{\infty}, N_n \in \mathbb{N} \text{ for each } n \in \mathbb{N}, \text{ for which the union } \bigcup_{i=1}^{N_n} A_i^{(n)} \text{ decreases to an empty set. Then, there exists an extension } \widetilde{\mu} \text{ on } (X, \sigma(\mathcal{A})) \text{ satisfying } \widetilde{\mu}(A) = \mu(A) \text{ for any } A \in \mathcal{A}.$

Using these concepts and the above extension theorem, we arrive at the following theorem.

Theorem 4. Let \mathcal{A} be a countable algebra, and assume that $\mathcal{B} = \sigma(\mathcal{A})$. Let μ be a set function defined on \mathcal{B} and k be a positive integer satisfying the following properties.

- (a) μ is a formulaic k-additive set function on (X, \mathcal{B}) .
- (b) μ has k-oder bounded variation.
- (c) μ has k-oder fine continuity at \emptyset .
- (d) μ is continuous from below and above.

Then, μ is constructively k-additive on $(X, \sigma(A))$.

Proof. For a countable algebra \mathcal{A} , we can construct a sequence $\{\mathcal{A}_n\}_{n\in\mathbb{N}}$ of increasing finite algebras, which satisfies $\mathcal{A}=\bigcup_{n\in\mathbb{N}}\mathcal{A}_n$. Then, $\mathcal{A}^{(j)}=\bigcup_{n=1}^\infty\mathcal{A}_n^{(j)}$ for any $j\leq k$. Using Proposition 5, for each $n\in\mathbb{N}$, there exist σ -additive measures $\mu_j^{(n)}$ on $(X^{(j)},\mathcal{A}_n^{(j)})$ $(j\leq k)$ satisfying

$$\mu(A) = \sum_{j=1}^{k} \mu_j^{(n)}(A^{(j)}), \quad A \in \mathcal{A}_n.$$

Let us define an extension $\widetilde{\mu_j^{(n)}}$ of $\mu_j^{(n)}$ as follows.

$$\widetilde{\mu_j^{(n)}}(U) = \begin{cases} \mu_j^{(n)}(U) & \text{if } U \in \mathcal{A}_n^{(j)} \\ 0 & \text{if } U \notin \mathcal{A}_n^{(j)}, \quad U \in \mathcal{A}^{(j)}. \end{cases}$$

Then, for each $j \leq k$ and $U \in \mathcal{A}$, the sequence $\{\mu_j^{(n)}(U)\}_{n=1}^{\infty}$ is bounded by the assumption (b). In general, a bounded sequence has a convergent sub-sequence. Thus, by countably selecting sub-sequences many times, there exists a subsequence $\mu_j^{(n_\ell)}$ such that $\{\mu_j^{(n_\ell)}(U)\}_{\ell}$ converges for any $U \in \mathcal{A}$ and $j \leq k$. Thus, we define a set function

$$\mu_j(U) = \lim_{\ell \to \infty} \mu_j^{(n_\ell)}(U).$$

Any element $U \in \mathcal{A}$ belongs to \mathcal{A}_n for a sufficiently large $n \in \mathbb{N}$ and $\mu_j^{(n)}$ is finitely additive on \mathcal{A}_n . Then, the limit μ_j is also finitely additive on \mathcal{A} . Assumptions (b) and (c) imply that μ_j satisfies the assumptions of Theorem 3 and μ_j can be extended on $(X^{(j)}, \mathcal{B}^{(j)})$ as a σ -additive signed measure for $j \leq k$.

On a finite σ algebra constructive k-additivity is derived from formulaic k-additivity. Thus, constructive k-additivity is valid on \mathcal{A} , and using the continuity from above and below (condition (d)), this property can be extend to the minimal monotone class including \mathcal{A} . It is well known that this class is same with $\sigma(\mathcal{A})$ (see [8] for example). Then, we obtain constructive k-additivity on $(X, \sigma(\mathcal{A}))$. \square

6 Conclusion

In this study, we discussed the relation between constructive and formulaic k-additivity. A constructively k-additive set function is always formulaic k-additive. A distorted measure is constructively k-additive if and only if it is formulaic k-additive. We defined "k-order bounded variation" and "fine continuity at \emptyset " for a set function, and using these concepts, we gave a sufficient condition for constructive k-additivity for a formulaic k-additive measure.

Constructive k-additivity must be useful for further arguments. The existence of a σ -finite measure is important, for example, to construct an L_p -theory for functional analysis on non additive monotone measure spaces. There remain several problems for the advance of these concepts. To show the uniqueness of the σ -additive measure on the set spaces, to make the structure of σ -algebra of the set spaces clear, and other detailed problems. We have to try to solve these problems.

References

- Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92, 167–189 (1997)
- 2. Combarro, E.F., Miranda, P.: On the structure of the k-additive fuzzy measures, Fuzzy Sets and Systems 161 (17), 2314–2327 (2010)
- 3. Kolesarova, A., Li, J., Mesiar, R., k-additive aggregation functions and their characterization, Eur. J. Oper. Res. 265 (2018) 985–992.
- 4. Mesiar, R.: Generalizations of k-order additive discrete fuzzy measures, Fuzzy Sets and Systems 102 423-428 (1999)

- 5. Fukuda, R., Honda, A., Okazaki, Y.: Constructive k-additive measure and decreasing convergence theorems. Lecture Notes in Artificial Intelligence **12256**, 104–106 (2020)
- 6. Honda, A., Fukuda, R., Okazaki, Y.: Non-discrete k-order additivity of a set function and distorted measure. Fuzzy sets and systems. to appear.
- 7. Tao, T.: An Introduction to Measure Theory, Graduate Studies in Mathematics. American Mathematical Society (2011)
- 8. Neveu, J.: Mathematical foundations of the calculus of probability, Holden-Day series in probability and statistics. San Francisco, Holden-Day, (1965)